水熊也称水熊虫,是对缓步动物门生物的俗称。有记录的大约有900余种,其中许多种是世界性分布的。甚至在喜马拉雅山脉(6000m 以上)和深海(4000m 以下)都可以找到它们的踪影。此外还发现水熊可在真空和太空中生存。
水熊也称水熊虫,是对缓步动物门生物的俗称。有记录的大约有900余种,其中许多种是世界性分布的。甚至在喜马拉雅山脉(6000m 以上)和深海(4000m 以下)都可以找到它们的踪影。此外还发现水熊可在真空和太空中生存。
水熊是地球上生命力最强的生物,要杀死水熊是极为困难的。水熊体型极小,必须用显微镜才能看清它的面貌。它几乎遍布全球,主要生活在淡水的沉渣、潮湿土壤以及苔藓植物的水膜中,少数种类生活在海水的潮间带。
把一片干燥的苔藓,放在水盆里浸泡2小时许,取出放在干净的碟子里,弹动一下苔藓,会出现几个小点点。放在显微镜下观察,会发现它们是胖墩墩的,像熊一样憨态可掬。原来是熊状的小虫子,通常在水里或潮湿的苔藓上生活,由于模样很像熊,故科学家命名它们为“水熊”。
水熊的身体表层覆盖着一层水膜,目的是为了保持身体干燥,同时可呼吸水膜中的氧气。
水熊是怎样生活的呢?它靠尖锐的吸针吸食动植物细胞里的汁液为生。水熊的特点是它从卵里生出来就是成年了,无童年时期,身体里细胞的数量终生都不再改变。
形态特征
缓步动物是多细胞动物。它们非常细小,大部分不超过1毫米,最小的Echiniscus parvulus初生的时候只有50微米。而最大的Macrobiotus bufelandi则只达1.4毫米。通体透明,无色,黄色,棕色,深红色或绿色。它们的颜色主要是它们的食物赋予的。它们食入含类胡萝卜素的食物,类胡萝卜素可以在各器官沉积。
它们由头部,四个体节,被几丁质构成的角质层覆盖。四对脚,末端有爪子,吸盘或脚趾。由长长的细胞组成的肌肉因应体节而分布。口前有两向前突出,一个用于刺进食物,另一个则是吸收工具。前肠有很多成对腺体,薄薄的食道连接中肠。在两个目的水熊虫中肠和末肠之间有马氏管,专司体内的渗透压平衡。
神经系统的构成:咽上下神经节,其中咽下神经节和腹部四个神经节链式相连。体腔中的细胞负责储存。水熊虫没有循环系统和呼吸系统。
缓步动物通常是雌雄异体。它们的性腺是次体腔(事实上,所有的节肢动物都是这样)的残留物,是不成对的囊状器官,或者是在肛门前向外开口,或者是向终肠开口。卵子并不需要事先受精就可以被排出体外。
生存环境
电镜下的水熊虫,水熊虫在干燥状态或环境恶化时,身体会缩成圆桶形自动脱水静静地忍耐蛰伏(隐生现象),此时会展现惊人的耐力。生命力超强,能在冷冻、水煮、风干的状态下存活,甚至能在真空中或者放射性射线下存活。
生存能力
缓步动物门 具有全部四种隐生性(即低湿隐生、低温隐生、变渗隐生及缺氧隐生),能够在恶劣环境下停止所有新陈代谢。缓步动物也因此被认为是生命力最强的动物。在隐生的情况下,一般可以在高温(151°C)、接近绝对零度(-273.15°C)、高辐射、真空或高压的环境下生存数分钟至数日不等。曾经有缓步动物隐生超过120年的记录。
1、低温隐生
低温就会引起低温隐生。缓步动物能先被冷冻再经解冻而复苏,而且不会对身体造成损坏。1975年Crowe将活动状态的Macrobiotus areolatus放到2毫升-20°C的水中。所有实验动物立刻进入小桶状态。在4°C的水中解冻只需要一分钟。80%的动物成功苏醒。
3、低湿隐生
这是最常见的隐生形式,当陆生的缓步动物生活环境开始缺水时即会发生。但当它们再次接触到水的时候,它们能在很短时间之内重新活动。包括陆生缓步动物在内,只有它们身处水中才能存活。如果周边液体被稀释甚至低于体液浓度时,缓步动物就会蜷缩成桶状。背侧的甲片会层叠在一起,甲片之间的弹性角质层会收缩。进入所谓的“小桶状态”(Cask Phase)。
进入“小桶状态”的首要原因是缺氧。实验中停止通风,缓步动物会收缩。但在水中肌肉的收缩状态不能持久。所以“小桶”遇水即会重新舒展,但个体会立即进入窒息状态(Asphyxia)。
缓步动物能渡过缺水期有前提,就是该过程是缓慢进行的而且空气湿度不能太低。干燥过程太快,缓步动物就没有时间去收缩。作违背该前提的实验,可以观察到缓步动物紧压在地表,很难复苏。
4、缺氧隐生
缺氧隐生发生于缓步动物周遭液体含氧量低于一个阈值。开始的时候缓步动物先收缩,但后来就会伸展到最大状态,同时也是窒息状态,而且它们已没有能力排出进入体内的水分。一些种类能在缺氧状态下存活五天。缺氧隐生时缓步动物的新陈代谢状态不明。
5、变渗隐生
变渗隐生还没有很好的被观察到。变渗隐生是因为环境的渗透压升高引起的。Macrobiotus bufelandi在0.4%的盐溶液中仍然能活动。在15%的盐溶液中它会在9秒之内进入小桶状态。Echiniscoides sigismundi在淡水中会窒息,但若在三天内将它重新放到海水中,它就会苏醒过来。
6、胞囊形式
在包囊中渡过困难时期并不算是隐生的一种。
在苔藓和干草间生活的,特别是淡水生的种类能够通过这种胞囊的形式渡过困难时期。在这种状态下缓步动物会缩小成只有原来20%到50%的体积,降低新陈代谢甚至分解部分器官。该过程伴随有三次连续的蜕皮,结束的时候,动物就会被多层角质层外壳所包绕。在这种状态下缓步动物能存活一年。当环境改变回来,该个体能在6到48小时内脱壳而出。
胞囊的形成只会在水中发生。它远不如小桶状态那样具抵抗能力,而且其水分含量也决定了其不具有抗高温能力。
7、生存状况
德国科隆-波尔兹宇宙医学研究中心研究员、参加本次研究的天体生物学家之一彼得拉·雷特贝格说,“我们发现,这两种缓步类动物在太空环境中都生活得很好,和在地面上没有多大区别。但是遭受太空环境和太阳辐射双重考验后的样本,存活率很低。” 实际上,当最终被放回水中的时候,暴露在太空环境和太阳辐射双重考验下的缓步类动物只有10%存活了下来,并且,所有的幼虫都没有孵化出来。但是,荣松说,“尽管如此,这也是人类迄今为止发现的第一种在双重暴露下,仍然有样本存活的动物。”雷特贝格推测,可能是缓步类动物的外层,即皮层,可以帮助它们抵御太阳辐射。
研究人员称,和微生物细菌耐辐射奇球菌一样,缓步类动物肯定也有一种细胞机理——可以修复辐射的伤害,或者直接抵御太阳辐射。荣松说,“在遭受太阳辐射的时候,没有数据显示缓步类动物的体内在发生变化。所以,我们不知道太阳辐射对它们的伤害有多大,它们又是怎样修复这些伤害的。” 实验表明,至少有一些动物可以在严酷的太空环境下毫无屏障地存活。在这个“超级坚强”动物的名单上,还包括轮虫类、线虫类(蛔虫)、可抗干燥的昆虫幼虫,还有甲壳类如盐水虾。科学家发现,所有的这些“超级动物”都和缓步类动物一样,具备高度抗干燥的能力。一部分缓步类动物赖以生存的地衣类植物也可以在太空环境下生存。荣松说,“如果保护这些缓步类样本远离太阳辐射,它们可以在太空中存活几年。但是问题是,飞船进出大气层时会产生巨大的喷射力,这些样本也受到了影响。”飞船进出太空大气层产生的灼热感和一个石块进出行星大气层产生的摩擦大致相当。
星际旅行可能会花费几百万年的时间,人类并没有能力进行如此长期的实验。但是,至少有一部分缓步类动物在星际旅行最开始的10天里可以完好地生存。测验缓步类动物生存能力的真正问题是寻找一个合适的环境。荣松说,“只要找到一个比太空温和一些的环境,缓步类动物就可能繁殖、生存。”
8、太空实验
瑞典克里斯蒂安斯特大学的伊格玛及其同事认为,如果地球上有动物能够在太空恶劣环境下生存,缓步动物当是首选。因此在2013年9月,他们选择了两种缓步动物R.coronifer和小斑熊虫,在干粉状态下放入欧空局BioPan-6太空舱,并将其送入了太空轨道,进而观察这种生物在太空中会有什么表现。
这些缓步动物在太空中,经过10天暴露在辐射、真空及低温条件下。结果发现,R.coronifer无法在紫外照射的条件下生活,科学家认为这可能是DNA受损所致。不过,有3个小斑熊虫样本却未受影响。在滤去紫外线的条件下,这些经过恶劣太空条件考验的小动物同对照样本一样,可排卵,并可脱壳成活。该结果发表于《当代生物》杂志。
该结果表明,地球生物的适应能力非常强。而此前,人类仅知苔藓和细菌可在真空和宇宙辐射下生存。虽然缓步动物可在地球极其干燥的条件下生存,但太空的条件极端恶劣。如地球海平面大气压为十万帕斯卡,而在地球低轨道,大气压是地球大气压10亿分之一。在这种条件下,几乎没有水分子可以保留在体内。
科学家试图通过这个实验,来了解地球生物能否在星际旅行时生存,并希望掌握哪些生物能搭乘太空船,进而导致其他星球被地球生物所污染。德国太空生物学家戈达认为,缓步动物能在极端条件下生存的能力对人类移居其他星球十分重要。但他认为,本次实验结果尚无法了解动物是如何在恶劣环境下发育和繁殖的。而伊格玛则认为,缓步动物搭乘太空船去污染火星的可能性非常小,因为缓步动物需要食物。她认为最可能搭便车到火星去的可能会是苔藓或细菌。科学家还不清楚,缓步动物能抵抗紫外辐射的原因。他们推测这可能与其在缺水后能够复活的能力有关。
研究历史
1、物种发现
“小水熊虫”在1773年首次被一位名叫哥策的神父描述,但并不完整。1774年和1776年意大利人考廷和斯巴兰扎尼发现,在缺水的环境下,缓步动物能够不脱去保护外壳而“复活”。斯巴兰扎尼并且指出,缓步动物要渡过缺水时期,就必须慢慢的失水。而缓步动物Tardigrada这个名字,也是斯巴兰扎尼首次给出的。
从此直至今天,人们对缓步动物在动物分类中的位置,形态学,生活方式,组织学以及其隐生性的研究兴趣有增无减。
2、米勒研究
1785年米勒对这种动物作了深入的观察。他尝试将缓步动物归入动物演化树中并且把它归入壁虱属。米勒所使用的学名Acarus ursellus被林奈写到了他的《自然分类》中。1834年舒尔策发现了有名的Macrobiotus bufelandi。该名字来源于柏林医生Hufeland,他著了一本有关长寿术(德语:Makrobiotik)的书叫《延年益寿之艺术》。相对于斯巴兰扎尼的“复活”,舒尔策认为缓步动物在缺水后再次接触到水时,是“苏醒”过来了。但他的看法并不是得到很多的认同。他同时代的爱亨伯格则认为,缺水时,缓步动物能分泌一种物质,在里面缓步动物不但能度过困难时期,而且能繁衍后代。数年后“醒过来”的只是它的后代。更有人认为那是一种自然发生(generatio spontanea)。
对缓步动物形态,系统分类和生理研究有着最深远影响的贡献当属法国人Doyères所写的书《Mémoire sur les Tardigrades》(1840-1842年)。他强调了缓步动物在慢慢失水的环境中“复活”的能力。这和当时另一种观点相冲突,就是认为,没有任何预防措施可以阻止完全脱水的动物的死亡。1859年巴黎生物协会最终通过一份超过100页的鉴定形成定论,就是Doyères的意见是对的。新的问题是,在这种脱水环境中,缓步动物的新陈代谢究竟只是变慢了还是停止了。20世纪初,耶稣会神父拉门通过缓步动物还能度过低温(绝对零度)环境的现象认为,新陈代谢是停止了。1922年鲍曼通过对脱水隐生的形态和生理方面的研究,再次捍卫了这一观点。
3、分类研究
1851年Dujardin认为缓步动物是一种原本生活在海洋里的生物,这是缓步动物的分类的第一步。1907-1909年Murray在不列颠-南极探险中收集到多种缓步动物的样本。使得缓步动物的种类在很短的时间内上升到了25种。1928年图灵为缓步动物建立了一个新目。但缓步动物在动物界中的位置在Doyères的著作中并没有被提及。1851年Dujardin根据它们具有和线虫动物相似的咽,而认为缓步动物是线虫动物的近亲。而1896年海克和1909年里希特斯则认为它的近亲应该是节肢动物。但大部分的专家却认为应是节肢动物。1929年根据当时组织学的证据人们将它划为节肢动物下的纲。到了1953年,人们终于可以有技术基础去测量缓步动物正常和隐生状态下的氧气消耗量。1968年科学家通过电子显微镜观察到缓步动物的储存细胞。1972年拉马佐蒂的专著第二版出版,列举了413种缓步动物。
1974年借拉马佐蒂75大寿之际在意大利城市帕兰扎(Pallanza)举行了第一届国际缓步动物论坛。
生命力实验
【冷冻】-200摄氏度能够存活若干天,-272摄氏度能够存活2分钟。
【高温】181度高温下存活2分钟。
【放射能】在5700格雷强度的放射线下存活良好。(1格雷放射线相当于5000台胸透仪的放射强度,10~20格雷强度的放射线就能轻易杀死人类或者地球上大部分的动物。)
【真空】在真空中依然能存活下来。
【压强】可以经受住600兆帕斯卡的压强,最深的马里亚纳海沟水压的6倍也无法把它压扁。日本神奈川大学科学家在研究中发现,水熊虫能身处6亿帕斯卡的压强下而安然无恙,这一压力为大气压的6000倍,是绝大多数生物、包括细菌所能承受的压力极限的两倍。
【生命力研究】20世纪20年代,德国佛莱堡大学的拉姆把处在隐生现象的水熊虫分别放在150度(只有厌氧菌跟水熊虫才能处在如此高温下)和零下200度(接近绝对零度)的环境,结果发现不论在什么情况下,只要恢复常温并给予水分,水熊虫就会复活并再度开始缓慢地步行。
【X射线辐射】能承受5.7万伦琴的X射线辐射(500伦琴即可杀死人类),原子弹的辐射对它无效。
有研究报告指出,把收藏在博物馆达120年的苔藓类标本添加水分后,其中的水熊虫又恢复活动状态。水熊虫这种生物的生命力比蟑螂还强,科学家曾经在盐矿中发现已冬眠了数百年的水熊虫,给予水分和营养后,能够醒过来并继续正常的生理活动